再帰的なマージソートは、スペースと時間を多く占有しますが、非再帰アルゴリズムは異なり、追加のスペースの複雑さは最小で O (N) です。
陳越姥姥の MOOC では、非常に明確に説明されています〜ここをクリック
ここでは、コードとコメントを直接掲載します
#include <iostream>
#include <cstdio>
#include <queue>
using namespace std;
typedef long long ll;
const int maxn = 100005;
const int inf = 0x3f3f3f;
int N;
ll a[maxn];
void swap(ll &a, ll &b){//交換a,bの値
int tmp = a;
a = b;
b = tmp;
}
void Merge(ll a[],ll tmp[], int s, int m, int e) {
//配列aの部分配列a[s,m-1]とa[m,e]を配列tmpにマージし、tmpがソートされた状態になるようにする
int pb = s;
int p1 = s, p2 = m;//p1は前半部分、p2は後半部分を指す
while (p1 <= m-1 && p2 <= e) {
if (a[p1] <= a[p2])
tmp[pb++] = a[p1++];
else
tmp[pb++] = a[p2++];
}
while(p1 <= m-1)
tmp[pb++] = a[p1++];
while(p2 <= e)
tmp[pb++] = a[p2++];
for (int i = 0; i < e-s+1; ++i)
a[s+i] = tmp[i];
}
void Merge_Pass(ll a[], ll b[], int N, int len) {
//配列aを長さlenで分割し、bにマージする
//lenは現在のソート済み部分列の長さ
int i;
for(i = 0; i <= N - 2*len; i += 2*len)
//マージする各ペアを見つける 最後から2番目のペアまで
Merge(a, b, i, i+len, i+2*len-1); //aをマージする
if(i+len < N) //最後に2つの部分列がある場合
Merge(a, b, i, i+len, N-1);
else //最後に1つのソート済み部分列が残る場合
for(int j = i; j < N; ++j) b[j] = a[j];
}
void Merge_Sort(ll a[], int N) {
int len = 1;//ソート済み部分列の長さを初期化
ll *tmp;
tmp = new ll[N];
if(tmp != NULL) {
while(len < N) {
Merge_Pass(a, tmp, N, len);
len *= 2;
Merge_Pass(tmp, a, N, len);
len *= 2;
}
delete [] tmp;
} else printf("スペースが不足しています");
}
int main(){
scanf("%d", &N);
for(int i = 0; i < N; ++i)
scanf("%lld", &a[i]);
Merge_Sort(a, N);
for(int i = 0; i < N; ++i) {
printf(" %lld"+!i, a[i]);
}
return 0;
}