I. Binary Search Tree#
1. What is a Binary Search Tree#
A Binary Search Tree (BST, Binary Search Tree), also known as a Binary Sort Tree or Binary Lookup Tree, is a binary tree that can be empty. When it is not empty, it satisfies the following properties:
- The key values of all non-empty left subtrees are less than the key value of its root node.
- The key values of all non-empty right subtrees are greater than the key value of its root node.
- Both left and right subtrees are binary search trees.
2. Operations on Binary Search Trees#
(1) Find Operation in Binary Search Tree#
The value to be searched is X.
- Start searching from the root node. If the tree is empty, return NULL.
- If the search tree is not empty, compare X with the key value of the root node and proceed as follows:
- If X is less than the key value of the root node, search in the left subtree.
- If X is greater than the key value of the root node, search in the right subtree.
- If X is equal to the key value of the root node, the search is complete, return a pointer to that node.
Tail Recursion Implementation#
Position Find(ElementType X, BinTree BST) {
if( !BST ) return NULL; // Search failed
if( X > BST->Data )
return Find(X, BST->Right); // Operation 1
else if (X < BST->Data)
return Find(X, BST->Left); // Operation 2
else
return BST; // Operation 3 Search successful
}
Iterative Function Implementation#
Position Find(ElementType X, BinTree BST) {
while(BST) {
if (X > BST->Data)
BST = BST->Right; // Operation 1
else if (X < BST->Data)
BST = BST->Left; // Operation 2
else
return BST; // Operation 3 Search successful
}
return NULL; // Search failed
}
(2) Finding Maximum and Minimum Elements#
- The maximum element must be at the end node of the rightmost branch of the tree.
- The minimum element must be at the end node of the leftmost branch of the tree.
Finding the Maximum Element#
Recursive Function
Position FindMin(BinTree BST) {
if (!BST ) return NULL; // Empty tree, return NULL
else if ( !BST->Left )
return BST; // Found the leftmost leaf node
else
return FindMin(BST->Left); // Continue searching along the left branch
}
Iterative Function
Position FindMin(BinTree BST) {
if (BST) {
while (BST->Left) BST = BST->Left;
}
return BST;
}
Finding the Minimum Element#
Recursive Function
Position FindMax(BinTree BST) {
if (!BST ) return NULL; // Empty tree, return NULL
else if ( !BST->Right )
return BST; // Found the leftmost leaf node
else
return FindMin(BST->Right); // Continue searching along the right branch
}
Iterative Function
Position FindMax(BinTree BST) {
if (BST) {
while (BST->Right) BST = BST->Right;
}
return BST;
}
(3) Insertion in Binary Search Tree#
To ensure that it remains a binary search tree after insertion, it is crucial to find the position where the element should be inserted.
BinTree Insert(ElementType X, BinTree BST) {
if(!BST) { // The original tree is empty, create and return a one-node binary search tree
BST = malloc(sizeof(struct TreeNode));
BST->Data = X;
BST->Left = BST->Right = NULL;
} else { // Start looking for the position to insert the element
if (X < BST->Data)
BST->Left = Insert(X, BST->Left);
else if (X > BST->Data)
BST->Right = Insert(X, BST->Right);
else printf("This value already exists");
}
return BST;
}
(4) Deletion in Binary Search Tree#
Consider three cases:
- If the node to be deleted is a leaf node: delete it directly and modify the pointer of its parent node.
- If the node to be deleted has only one child: point its parent's pointer to the child node of the node to be deleted.
- If the node to be deleted has both left and right subtrees: use another node to replace the deleted node (the minimum element of the right subtree or the maximum element of the left subtree).
BinTree Delete(ElementType X, BinTree BST) {
Position Tmp;
if(!BST) printf("The element to be deleted was not found");
else if (X < BST->Data)
BST->Left = Delete(X,BST->Left);
else if (X > BST->Data)
BST->Right = Delete(X,BST->Right);
else { // Found the node to be deleted
if (BST->Left && BST->Right) { // The node to be deleted has both left and right children
Tmp = FindMin(BST->Right); // Find the smallest element in the right subtree to fill the deleted node
BST->Data = Tmp->Data;
BST->Right = Delete(BST->Data,BST->Right); // After filling, delete that minimum element in the right subtree
}
else { // The node to be deleted has 1 or no child nodes
Tmp = BST;
if (!BST->Left) // Has a child or no child
BST = BST->Right;
else if (!BST->Right)
BST = BST->Left;
free(Tmp);
}
}
return BST;
}
II. Balanced Binary Tree#
1. What is a Balanced Binary Tree#
A Balanced Binary Tree (AVL Tree, Balanced Binary Tree), can be empty. When it is not empty, it satisfies the following properties:
- The absolute difference in height between the left and right subtrees of any node does not exceed 1.
- The maximum height of an AVL tree with n nodes is O(log~2~n)!
Balance Factor (BF, Balanced Factor): BF(T) = h~L~-h~R~, where h~L~ and h~R~ are the heights of the left and right subtrees of T, respectively.
2. Adjustments in Balanced Binary Trees#
RR Insertion — RR Rotation [Right Single Rotation]#
The problematic node (the troublesome node) is located in the right subtree of the node that was disturbed (the discoverer).
LL Insertion — LL Rotation [Left Single Rotation]#
The problematic node (the troublesome node) is located in the left subtree of the node that was disturbed (the discoverer).
LR Insertion — LR Rotation#
The problematic node (the troublesome node) is located in the right subtree of the left subtree of the node that was disturbed (the discoverer).
RL Insertion — RL Rotation#
The problematic node (the troublesome node) is located in the left subtree of the right subtree of the node that was disturbed (the discoverer).
Note: Sometimes, even if the inserted element does not require structural adjustments, it may be necessary to recalculate some balance factors.#
3. Implementation of Balanced Binary Tree#
Definition Part#
typedef struct AVLNode *Position;
typedef Position AVLTree;
struct AVLNode {
ElementType Data;
AVLTree Left, Right;
int Height;
};
int Max(int a, int b) {
return a>b?a:b;
}
Left Single Rotation#
Note: A must have a left child B. Perform a left single rotation between A and B, and update the heights of A and B, returning the new root node B.
AVLTree SingleLeftRotation(AVLTree A) {
AVLTree B = A->Left;
A->Left = B->Right;
B->Right = A;
A->Height = Max( GetHeight(A->Left),GetHeight(A->Right) ) + 1;
B->Height = Max( GetHeight(B->Left),A->Height ) + 1;
return B;
}
Right Single Rotation#
Note: A must have a right child B. Perform a right single rotation between A and B, and update the heights of A and B, returning the new root node B.
AVLTree SingleRightRotation(AVLTree A) {
AVLTree B = A->Right;
A->Right = B->Left;
B->Left = A;
A->Height = Max( GetHeight(A->Left),GetHeight(A->Right) ) + 1;
B->Height = Max( A->Height, GetHeight(B->Right) ) + 1;
return B;
}
LR Rotation#
Note: A must have a left child B, and B must have a right child C. First, perform a right single rotation between B and C, returning C. Then, perform a left single rotation between A and C, returning C.
AVLTree DoubleLeftRightRotation(AVLTree A) {
A->Left = SingleRightRotation(A->Left);
return SingleLeftRotation(A);
}
RL Rotation#
Note: A must have a right child B, and B must have a left child C. First, perform a left single rotation between B and C, returning C. Then, perform a right single rotation between A and C, returning C.
AVLTree DoubleRightLeftRotation(AVLTree A) {
A->Right = SingleLeftRotation(A->Right);
return SingleRightRotation(A);
}
Insertion#
Insert X into AVL tree T and return the adjusted AVL tree.
AVLTree Insert(AVLTree T,ElementType X) {
if (!T) { // If the tree to be inserted is empty, create a tree containing node X
T = (AVLTree) malloc(sizeof(struct AVLNode));
T->Data = X;
T->Height = 0;
T->Left = T->Right = NULL;
} else if( X < T->Data) {
T->Left = Insert(T->Left, X);
if (GetHeight(T->Left)-GetHeight(T->Right) == 2) { // Needs left rotation
if (X < T->Left->Data)
T = SingleLeftRotation(T); // Needs left single rotation
else
T = DoubleLeftRightRotation(T); // Left-Right double rotation
}
} else if (X > T->Data) {
T->Right = Insert(T->Right, X);
if (GetHeight(T->Left)-GetHeight(T->Right) == -2) { // Needs right rotation
if (X > T->Right->Data)
T = SingleRightRotation(T); // Needs right single rotation
else
T = DoubleRightLeftRotation(T); // Right-Left double rotation
}
}
// Update tree height
T->Height = Max( GetHeight(T->Left),GetHeight(T->Right) ) + 1;
return T;
}
Complete Code Demonstration#
#include <stdio.h>
#include <stdlib.h>
typedef int ElementType;
typedef struct AVLNode *Position;
typedef Position AVLTree;
struct AVLNode {
ElementType Data;
AVLTree Left, Right;
int Height;
};
int Max(int a, int b) {
return a>b?a:b;
}
int GetHeight(AVLTree A) {
if (A)
return A->Height;
else
return 0;
}
AVLTree SingleLeftRotation(AVLTree A) { // Left single rotation
AVLTree B = A->Left;
A->Left = B->Right;
B->Right = A;
A->Height = Max( GetHeight(A->Left),GetHeight(A->Right) ) + 1;
B->Height = Max( GetHeight(B->Left),A->Height ) + 1;
return B;
}
AVLTree SingleRightRotation(AVLTree A) { // Right single rotation
AVLTree B = A->Right;
A->Right = B->Left;
B->Left = A;
A->Height = Max( GetHeight(A->Left),GetHeight(A->Right) ) + 1;
B->Height = Max( A->Height, GetHeight(B->Right) ) + 1;
return B;
}
AVLTree DoubleLeftRightRotation(AVLTree A) { // Left-Right double rotation
A->Left = SingleRightRotation(A->Left);
return SingleLeftRotation(A);
}
AVLTree DoubleRightLeftRotation(AVLTree A) { // Right-Left double rotation
A->Right = SingleLeftRotation(A->Right);
return SingleRightRotation(A);
}
AVLTree Insert(AVLTree T,ElementType X) { // Insert X into AVL tree T
if (!T) { // If the tree to be inserted is empty, create a tree containing node X
T = (AVLTree) malloc(sizeof(struct AVLNode));
T->Data = X;
T->Height = 0;
T->Left = T->Right = NULL;
} else if( X < T->Data) {
T->Left = Insert(T->Left, X);
if (GetHeight(T->Left)-GetHeight(T->Right) == 2) { // Needs left rotation
if (X < T->Left->Data)
T = SingleLeftRotation(T); // Needs left single rotation
else
T = DoubleLeftRightRotation(T); // Left-Right double rotation
}
} else if (X > T->Data) {
T->Right = Insert(T->Right, X);
if (GetHeight(T->Left)-GetHeight(T->Right) == -2) { // Needs right rotation
if (X > T->Right->Data)
T = SingleRightRotation(T); // Needs right single rotation
else
T = DoubleRightLeftRotation(T); // Right-Left double rotation
}
}
// Update tree height
T->Height = Max( GetHeight(T->Left),GetHeight(T->Right) ) + 1;
return T;
}
void PreOrderTraversal(AVLTree T) {
if(T) {
printf("%d", T->Data);
PreOrderTraversal( T->Left);
PreOrderTraversal( T->Right);
}
}
void InOrderTraversal(AVLTree T) {
if(T) {
InOrderTraversal( T->Left);
printf("%d", T->Data);
InOrderTraversal( T->Right);
}
}
int main() {
AVLTree T = NULL;
int i;
for (i = 1; i < 10; i++) {
T = Insert(T,i);
}
PreOrderTraversal(T); // Pre-order traversal
printf("\n");
InOrderTraversal(T); // In-order traversal
return 0;
}
Output:
421365879
123456789
Based on the pre-order and in-order traversals, it can be restored to form such a balanced binary tree.
III. Determine if it is the Same Binary Search Tree#
Problem: Given an insertion sequence that determines a unique binary search tree, determine whether various input insertion sequences can generate the same binary search tree.
How to determine if two sequences correspond to the same search tree?
Build a tree, then check if other sequences are consistent with that tree!
For example, input 3 1 4 2 to determine a binary search tree, check if 3 4 1 2 and 3 2 4 1 correspond to the same tree.
1. Representation of Search Tree#
typedef struct TreeNode *Tree;
struct TreeNode {
int v;
Tree Left,Right;
int flag; // Used to mark whether this node has been searched, 1 means searched
};
2. Build Search Tree T#
Tree MakeTree(int N) {
Tree T;
int i, V;
scanf("%d", &V);
T = NewNode(V);
for(i = 1; i < N; i++) {
scanf("%d",&V);
T = Insert(T,V); // Insert the remaining nodes into the binary tree
}
return T;
}
Tree NewNode(int V) {
Tree T = (Tree)malloc(sizeof(struct TreeNode));
T->v = V;
T->Left = T->Right = NULL;
T->flag = 0;
return T;
}
Tree Insert(Tree T, int V) {
if(!T) T = NewNode(V);
else {
if (V > T->v)
T->Right = Insert(T->Right, V);
else
T->Left = Insert(T->Left,V);
}
return T;
}
3. Determine if a Sequence is Consistent with Search Tree T#
Method: Sequentially search each number in the sequence 3 2 4 1 in tree T.
- If every node passed during the search has been searched before, then they are consistent.
- Otherwise (if an unvisited node is encountered during a search), they are inconsistent.
int check(Tree T,int V) {
if(T->flag) { // This point has been searched, check whether to search in the left or right subtree
if(V < T->v) return check(T->Left,V);
else if(V > T->v) return check(T->Right,V);
else return 0;
}
else { // The point to be searched is exactly this point, mark it
if(V == T->v) {
T->flag = 1;
return 1;
}
else return 0; // Encountered a point that has not been seen before
}
}
Determine whether the tree generated by an insertion sequence of length N is consistent with the search tree.
int Judge(Tree T,int N) {
int i, V, flag = 0; // flag=0 means currently consistent, 1 means inconsistent
scanf("%d",&V);
if (V != T->v) flag = 1;
else T->flag = 1;
for(i = 1; i < N; i++) {
scanf("%d", &V);
if( (!flag) && (!check(T,V)) ) flag = 1;
}
if(flag) return 0;
else return 1;
}
Clear the flag marks of each node in T to reset them to 0.
void ResetT(Tree T) {
if(T->Left) ResetT(T->Left);
if(T->Right) ResetT(T->Right);
T->flag = 0;
}
Free the space of T.
void FreeTree(Tree T) {
if(T->Left) FreeTree(T->Left);
if(T->Right) FreeTree(T->Right);
free(T);
}